Short Reports 1047

453 [M-PMAra] + (61.6), 262 [RDA] + (47.4), 203 [RDA - COOMe] + (100), 175 [PMAra] + (33.4).

The permethylether (10 mg) was refluxed in 5% HCl–MeOH (3 ml) for 5 hr. The reaction mixture was poured onto ice, filtered and the ppt was crystallized from MeOH to give methyl oleanolate, mp 201–202° (mmp, co-TLC). The filtrate was extracted with CHCl₃. The CHCl₃ soln was evaporated. The residue was found to be methyl-2,3,4-tri-O-methyl-L-arabinopyranoside by GC (column, 5% NPGS, 4 mm × 1.5 m; column temp., 180°; injector temp., 200°; N₂, 45 ml/min; R_t , 3.6 min).

Hydrolysis of compound 5. A soln of 5 (20 mg) in 5% HCl-MeOH (5 ml) was refluxed for 5 hr and concd under red. pres. to remove MeOH. After addition of H₂O the resulting ppt was filtered and crystallized from MeOH to yield a sterol mixture, mp 128–131°; MS m/z (rel. int.): 414 $[M_1]^+$ (100), 400 $[M_2]^+$ $(37.8), 329 [M_1 - C_5 H_9 O]^+ (100), 315 [M_2 - C_5 H_9 O]^+ (27.1),$ $303 [M_1 - C_7 H_{11} O]^+ (47.6), 289 [M_2 - C_7 H_{11} O]^+ (20.4), 275$ $[M_1 - C_9 H_{15}O]^+$ (22.7), 273 $[M - side chain]^+$ (79.6), 261 $[M_2]$ $-C_9H_{15}O$]⁺ (11.1), 255 [M-side chain $-H_2O$]⁺ (76.9), which was found to consist of sitosterol (64.5 $\frac{9}{10}$, R_t 3.4 min) and campesterol (35.5 %, R, 2.8 min) by GC (column, 3 % OV-I, 4 mm $\times 1.5$ m; column temp., 270° ; injector temp., 300° ; N_2 , 45 ml/min). The filterate was hydrolysed with conc. HCl, neutralized with Ag₂CO₃ and subjected to TLC (cellulose; pyridine-EtOAc-HOAc-H₂O, 36:36:7:21); only D-glucose (R_f 0.27) was detected.

Acid hydrolysis of compound 6. Acid hydrolysis of 6 (50 mg) under the same conditions as for 3 yielded 2 and L-arabinose.

Acetylation of compound 6. Acetylation of 6 (50 mg) under the same conditions as for 3 gave the same acetate as that prepared from 3

Permethylation of compound 6 followed by methanolysis. Permethylation of 6 (30 mg) according to the method of ref. [5] gave a permethylated product, mp $163-165^\circ$; MS m/z (rel. int.): 674 [M]⁺ (0.24), 483 [M-PMAra]⁺ (26.2), 262 [RDA]⁺ (64.3), 203 [RDA-COOMe]⁺ (100), 175 [PMAra]⁺ (43.2); ¹H NMR (CDCl₃): δ 0.68–1.09 (Me × 6), 3.3, 3.41, 3.47, 3.55, 3.6 (3H each, s, OMe × 5), 4.17 (1H, d, J = 7 Hz, anomeric H).

The product (10 mg) was hydrolysed with 5% HCl-MeOH as above to yield 23-O-methylhederagenin methylester, mp 203-206°, identified by direct comparison with an authentic sample. By GC under the same conditions as above, methyl-2,3,4-tri-O-methyl-L-arabinopyranoside was detected in the filtrate freed from the genin.

Acknowledgements—This work was supported in part by research grants from KOSEF and DFG (Bonn).

REFERENCES

- Takeda, S. and Aburada, M. (1980) Shoyakugaku Zasshi 34, 200.
- Woo, W. S., Shin, K. H. and Lee, C. K. (1981) Arch. Pharm. Res. 4, 123.
- 3. Hudson, C. S. (1925) J. Am. Chem. Soc. 47, 265.
- 4. Aoki, T. and Suga, T. (1978) Phytochemistry 17, 771.
- Brimacombe, J. S., Joues, B. D., Stacey, M. and Willard, J. J. (1966) Carbohydr. Res. 2, 167.

Phytochemistry, Vol. 22, No. 4, pp. 1047-1049, 1983. Printed in Great Britain.

0031-9422/83/041047-03\$03.00/0 © 1983 Pergamon Press Ltd.

18-NORSPIROSTANOL DERIVATIVES FROM TRILLIUM TSCHONOSKII

KIMIKO NAKANO, TOSHIHIRO NOHARA, TOSHIAKI TOMIMATSU and TOSHIO KAWASAKI*

Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, 770 Tokushima, Japan; *Faculty of Pharmaceutical Sciences, Kyushu University, Maedashi 3-1-1, Higashi-ku, 812 Fukuoka, Japan

(Received 11 August 1982)

Key Word Index—Trillium tschonoskii; Liliaceae; 18-norspirostanol oligoside; acylated glycoside.

Abstract—Three 18-norspironstanol oligoglycosides partly acylated in their sugar moieties were isolated from the underground parts of *Trillium tschonoskii*. Their structures were characterized, as $1-O-[2'',3'',4''-\text{tri}-O-\text{acetyl}-\alpha-\text{L-rhamnopyranosyl}-(1 \rightarrow 2)-\alpha-\text{L-arabinopyranosyl}-\text{epitrillenogenin}-24-O-\text{acetate}, 1-O-[2'',3'',4''-\text{tri}-O-\text{acetyl}-\alpha-\text{L-rhamnopyranosyl}-(1 \rightarrow 2)-\alpha-\text{L-arabinopyranosyl}-\text{epitrillenogenin}$ and $1-O-[2'',4''-\text{di}-O-\text{acetyl}-\alpha-\text{L-rhamnopyranosyl}-(1 \rightarrow 2)-\alpha-\text{L-arabinopyranosyl}-\text{epitrillenogenin}-24-O-\text{acetate}.$

INTRODUCTION

Previously, we reported the structural characterizations of Ts-a (dioscin), Ts-b (methyl proto-dioscin)[1] and Ts-c[2] isolated from the underground parts of *Trillium*

tschonoskii. Our continuing study of this plant has led to the isolation of three additional 18-norspirostanol derivatives [3-6]. They are novel steroidal oligosides, designated Ts-d (1), Ts-e (2) and Ts-g (3), and this paper 1048 Short Reports

I $R_1 = R_2 = R_3 = Ac (Ts - d)$

2 $R_1 = R_2 = Ac, R_3 = H (Ts - e)$

3 $R_1 = R_3 = Ac, R_2 = H (Ts-g)$

5 $R_1 = R_2 = R_3 = H$

deals with the structure elucidations of these compounds.

RESULTS AND DISCUSSION

Ts-d (1), a white powder, $[\alpha]_D - 79.6^\circ$ (CHCl₃), showed absorptions in the IR spectrum due to an ester (1740 cm⁻¹) and α,β -unsaturated carbonyl (1700, 1625 cm⁻¹) together with a hydroxy group (3550 cm⁻¹). In the mass spectrum, it showed a peak at m/z 273 derived from the terminal peracetylated methylpentosyl cation. On acid hydrolysis with 2 N hydrochloric acid-methanol, 1 yielded an 18-norspirostanol derivative, epitrillenogenin (4) [5] as an aglycone along with arabinose and rhamnose as sugar components. On alkaline treatment of 1, it gave a glycoside which was identical with the acetyl-free compound, epitrillenoside C (5), derived from epitrillenoside CPA[5] which was previously obtained from Trillium kamtschaticum. The ¹H NMR spectrum of 1 exhibited four acetoxyl signals at δ 2.07 (\times 2), 2.16 and 2.18 and four methine protons at 5.32 (dd, J = 2.5, 3.5 Hz), 5.20 (dd, J= 2, 3 Hz), 5.45 (dd, J = 3, 10 Hz) and 5.04 (t, J = 10 Hz) adjacent to their acetoxyl groups, being ascribable to H-24, H-2", H-3", and H-4", respectively. Therefore, the structure of 1 can be represented as 1-O-[2", 3", 4"-tri-Oacetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - α -L-arabinopyranosyl]-epitrillenogenin-24-O-acetate.

Ts-e (2), a white powder, $[\alpha]_D - 121.0^\circ$ (CHCl₃), showed a similar IR spectrum [3550 (OH), acetoxyl (1740 cm⁻¹) and α,β -unsaturated carbonyl (1700, 1625 cm⁻¹)] to that of 1. On alkaline treatment, 2 also yielded epitrillenoside C (5). The mass spectrum of 2 showed a peak at m/z 273 due to the peracetylated methylpentosyl cation. The ¹H NMR spectrum of 2 exhibited three acetoxyl signals at δ 2.16, 2.08 (×2) and methine protons at 5.20, 5.43 and 5.05 assignable to H-2", H-3" and H-4", respectively, of the rhamnosyl moiety. Therefore, 2 was deduced to be 1-O-[2", 3", 4"-tri-O-acetyl- α -L-arabinopyranosyl]-epitrillenogenin.

Ts-g (3), a white powder, $[\alpha]_D - 96.7^\circ$ (CHCl₃), gave on alkaline treatment epitrillenoside C (5). The ¹H NMR spectrum of 3 showed three acetoxyls at δ 2.16, 2.12 and 2.06 and their acetoxyl methine protons at 5.30, 5.08 and 4.86 ascribable to H-24, H-2" and H-4", respectively. Consequently, 3 was deduced to be 1-O-[2",4"-di-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - α -L-arabinopyranosyl]-epitrillenogenin-24-O-acetate.

EXPERIMENTAL

Isolation of Ts-d (1), Ts-e (2) and Ts-g (3). The MeOH

extractives (316 g) of underground parts of *Trillium tschonoskii* Max. (3.5 kg) were partitioned between n-BuOH and H_2 O (each 200 ml). The organic layer was evaporated under red. pres. to give a residue (126 g) which was chromatographed on Si gel using CHCl₃-MeOH (50:1-30:1) to afford Ts-d (460 mg). Ts-e (32 mg) and Ts-g (27 mg).

Ts-d (1). A white powder, $[\alpha]_D^{22} = 79.6^{\circ}$ (CHCl₃; c 1.10). IR $v_{\text{max}}^{\text{CHCl}_3} \text{ cm}^{-1}$: 3550 (OH), 1740 (ester), 1700, 1625 (α , β -unsatd ketone). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm: 247 (ϵ = 7970). FDMS (m/z): 923 [M + H]⁺, 561, 519 [923 – (ara + rha · 3Ac)]⁺, 405 [ara $[\operatorname{rha} \cdot 3\operatorname{Ac}]^+$. EIMS (m/z): $+ \text{ rha} \cdot 3\text{Ac}$ $^+$, 273 $[C_{28}H_{40}O_{13}]^+$, 566, 542 $[C_{26}H_{38}O_{12}]^+$, 524, $[C_{24}H_{36}O_{11}]^+$, 447, 417, 355, 273 [rha·3Ac]⁺. ¹H NMR $(CDCl_3)$: δ 0.82 (3H, d, J = 7 Hz, Me-27), 1.05 (3H, s, Me-19), $2.07 \text{ (OAc} \times 2), 2.16, 2.18 \text{ (OAc} \times 2), 4.47 \text{ (1H, } d, J = 7 \text{ Hz, H-16)},$ 5.04 (1H, t, J = 10 Hz, H-4"), 5.20 (1H, dd, J = 2, 3 Hz, H-2"), 5.32 (1H, dd, J = 2.5, 3.5 Hz, H-24), 5.43 (1H, br s, H-1"), 5.45 (1H, br s, H-1"), 5.45dd, J = 3, 10 Hz, H-3"), 5.59 (1H, m, H-6). [Epitrillenogenin penta-acetate; 0.82 (3H, d, J = 6 Hz, Me-27), 1.12 (3H, s, Me-19),1.94, 2.02, 2.05, 2.07, 2.15 (OAc \times 5), 3.45 (1H, dd, J = 6, 11 Hz, H_{eq} -26), 3.93 (1H, dd, J = 11, 11 Hz, H_{ax} -26), 4.11 (1H, dd, J = 9, 11 Hz, H-21), 4.42 (1H, d, J = 6 Hz, H-16), 4.43 (1H, dd, J = 4, 11 Hz, H'-21), 4.73 (1H, dd, J = 4, 11 Hz, H-1), 4.96 (1H, d, J= 3.5 Hz, H-23), 5.26 (1H, dd, J = 2.5, 3.5 Hz, H-24). $\int_{-1.5}^{1.5} \text{C NMR}$ $(CDCl_3)$: δ aglycone part: 84.1, 37.2, 68.1, 42.5, 139.4, 124.8, 29.7, 31.7, 47.5, 42.1, 25.2, 28.0, 176.0, 138.7, 204.3, 81.7, 45.9, 13.6, 48.6, 61.5, 111.6, 71.7, 67.7, 34.1, 63.8, 12.1 (C-1-C-27); sugar moiety: 97.4, 75.1, 74.5, 69.9, 67.3 (arabinosyl C-1'-C-6'), 100.0, 70.2, 70.1, 72.7, 66.2, 17.8 (rhamnosyl C-1"- C-6").

Acid hydrolysis of 1. Compound 1 (3 mg) in 2 N HCl-MeOH (1 ml) was refluxed for 1 hr, then the soln was neutralized with 3% KOH-MeOH, concd and checked by Si gel TLC to detect epitrillenogenin (4) (R_f 0.50, CHCl₃-MeOH-H₂O, 8:2:0.2) and methylglycosides of arabinose (R_f 0.34) and rhamnose (R_f 0.41).

Alkaline hydrolysis of 1. A soln of 1 (320 mg) in 3% KOH-MeOH (12 ml) was refluxed for 50 min. The soln was neutralized with 1 N HCl-MeOH and evaporated to dryness in vacuo. The residue was treated with MeOH and the soluble part was passed through a Sephadex LH-20 column (eluent MeOH) to give a glycoside (5) as a white powder (139 mg), R_f 0.30 $(CHCl_3-MeOH-H_2O, 7:3:0.5), [\alpha]_D^{21}-135.7^{\circ} (MeOH; c 0.71).$ Ts-e (2). A white powder, $[\alpha]_D^{22} - 121.0^{\circ}$ (CHCl₃; c 1.20), IR $v_{\text{max}}^{\text{CHCl}_3} \text{ cm}^{-1}$: 3550 (OH), 1740 (ester), 1700, 1625 (α , β -unsatd ketone). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm: 247 (ε = 6300). FDMS (m/z): 903 [M + Na]⁺. EIMS (m/z): 584 [C₂₈H₄₀O₁₃]⁺, 566 [C₂₈H₃₈O₁₂]⁺, 524, 482, 459, 417, 381, 355, 273 [rha · 3Ac] +, 231, 217, 189, 171. ¹H NMR (CDCl₃): δ 0.95 (3H, d, J = 7 Hz, Me-27), 1.06 (3H, s, Me-19), 2.08 (OAc \times 2), 2.16 (OAc), 4.46 (1H, d, J = 7 Hz, H-16), 5.05 (1H, t, J = 10 Hz, H-4''), 5.20 (1H, m, H-2''), 5.43 (1H, br s, H-4'')1"), 5.44 (1H, dd, J = 3, 10 Hz, H-3"), 5.60 (1H, m, H-6). Alkaline treatment of 2 afforded epitrillenoside (5).

Ts-g (3). A white powder, $[\alpha]_D^{21} - 96.7^\circ$ (CHCl₃; c 0.90). EIMS (m/z): 584, 566, 542, 500, 459, 417, 381, 355, 339, 324, 296, 278, 266, 231, 217, 189, 171, 157. ¹H NMR (CDCl₃): δ 0.80 (3H, d, J = 7 Hz, Me-27), 1.04 (3H, s, Me-19), 2.06, 2.12, 2.16 (OAc × 3), 4.47 (1H, d, J = 7 Hz, H-16), 4.86 (1H, t, J = 10 Hz, H-4"), 5.08 (1H, m, H-2"), 5.30 (1H, m, H-24), 5.37 (1H, br s, H-1"), 5.60 (1H, m, H-6). Alkaline treatment of 3 gave epitrillenoside C (5).

REFERENCES

- Nohara, T., Kumamoto, F., Miyahara, K. and Kawasaki, T. (1975) Chem. Pharm. Bull. 23, 1158.
- Nakano, K., Nohara, T., Tomimatsu, T. and Kawasaki, T. (1982) J. Chem. Soc. Chem. Commun. 789.